Centro Lusíada de Investigação e Desenvolvimento em Energia e Gestão Industrial
     
     
     
 
Monitorização Inteligente de Ferramentas de Corte / Intelligent Tool Wear Monitoring
 

 

 

       
       
       
 

Equipe de Investigação

 
  Rui Gabriel Araujo de Azevedo Silva (Inv. Responsável)
Rui Manuel Ferreira Lima
José Manuel dos Santos Cruz
José Francisco Ferreira
Carlos Alberto Rego de Oliveira
 
     
       
       
       
 

Resumo

 
 

A indústria de manufactura e seus clientes requerem presentemente uma crescente flexibilidade, produtividade, e confiança nos processos assim como uma maior qualidade e valor para os seus produtos. Os sistemas utilizados no processo de supervisão são denominados de Sistemas de Monitorização (SM). Um SM pode ser reconhecido como servindo os seguintes objectivos: verificar falhas em máquinas ou processos; verificar e salvaguardar a estabilidade de processos e máquinas; providenciar meios que possibilitem a manutenção de tolerâncias via mecanismos de compensação; e, proteger o sistema de uma eventual danificação. Diversos factores impediram avanços no desenvolvimento dos SMs incluindo a escolha imprópria de sinais dos sensores, e sua utilização, e incapacidade de, robustamente, processar informação em ambientes ruidosos.
As redes neuronais artificiais com neurónios do tipo sigmoidal e McCulloch-Pitts encontraram grande adesão na investigação a nível industrial dadas as suas características mais atractivas, a abstracção de conhecimento de difícil acesso e capacidade de generalização perante sinais distorcidos. Não obstante, embora funcionando em determinadas circunstâncias, a maioria das aplicações precedentes de redes neuronais têm algumas limitações. No entanto, em anos recentes a evidência experimental tem acumulado resultados sugerindo que as redes neuronais biológicas, que comunicam através de impulsos, utilizam o sincronismo destes impulsos para codificar e computar informação de uma maneira mais eficiente. Também, em ferramentas de corte, os numerosos sinais detectados nos processos contêm uma estrutura temporal rica, requerendo dos circuitos neuronais um processamento em tempo real. Como sugerido, esta nova arquitectura computacional revela um maior poder computacional.
Pretende-se com este projecto desenvolver uma metodologia para um SM que, com base em redes neuronais impulsivas, permita fazer uma estimativa do desgaste da ferramenta de corte assim com prever o seu estado futuro. As implicações de tais sistemas são evidentes e de importância crucial numa eficiente programação de substituição de ferramentas em ambiente industrial.
Neste projecto está subjacente investigação em 3 sub-áreas do conhecimento que determinam importantes contribuições para o aperfeiçoamento dos SMs. Estas são: Caracterização de informação sensorial e desenho de sensores:- desenvolvimento de sensores que se ajustem ao ambiente industrial; Desenvolvimento de modelo neuronal:- desenvolvimento de um modelo de redes neuronais com base em neurónios do tipo impulsivo para processar informação em tempo real (à luz dos nosso conhecimento, é uma aplicação pioneira no campo da engenharia) conduzindo à separação e à identificação de informação escondida nos sinais provenientes dos sensores que poderão contribuir para uma melhor compreensão dos mecanismos de desgaste e sua natureza; e, Integração do sistema:- o desenvolvimento de um sistema para integrar todas as componentes, sob uma forma modular, dando origem a um sistema flexível que funciona em tempo real.


 
     
       
       
       
 

Abstract

 
 
Manufacturing industries and their customers are now demanding substantial increase in flexibility, productivity, and reliability from process machines as well as increased quality and value of their products. For machine tools the systems that provide the required feedback are termed tool condition monitors (TCM). A tool condition monitoring system can be viewed as serving the following purposes: advanced fault detection system for cutting and machine tool; check and safeguard machining process stability; means by which machining tolerance is maintained on the workpiece to acceptable limits by providing a compensatory mechanism for tool wear offsets; and, machine tool damage avoidance system. Several factors have impeded advances in the development of TCMSs including inappropriate choice of sensor signals, and their utilisation, and their inability to perform robustly in noisy environments.
Artificial neural networks of sigmoidal and McCulloch-Pitts neurons have found increasing favour in industry research because of their most attractive features, abstraction of hardly accessible knowledge and generalisation from distorted sensor signals. Nevertheless, although working in certain conditions, most of the previous applications of neural networks have some limitations. However, in recent years experimental evidence has been accumulating to suggest that biological neural networks, which communicate through spikes, use the timing of these spikes to encode and compute information in a more efficient way. Also, in cutting tools, numerous sensed signals on the process have a rich temporal structure, and neural circuits must process these in real time. As suggested, these new computationally architectures reveal a greater computational power.
Thus, this project is committed to the development of a methodology for estimation and prediction system based on artificial spiking neuron networks (ASNN). The implications of such a system are evident and of crucial importance towards an efficient scheduling of tool replacements, therefore, playing an important role in industry automation.
The project encompasses research in 3 sub-areas which are thought to be important contributions towards the advance in Tool Condition Monitoring. These are: Feature analysis and sensor design:- the design of reliable and feasible sensors for industrial use; Neural model development:- the development of a spiky neuron network model for real-time information processing (to the full extent of our knowledge, it is a pioneer application in the engineering field) that lead to the separation and identification of sensed objects hidden in tool wear sensed signals that might contribute to a further understanding of wear mechanisms and their nature; and, System integration:- the development of a system to integrate, in a modular fashion, all components into a real-time flexible system.
 
     
       
       
       
 

Project Objectives

 
 
The objective is to the study and develop a real-time estimation and prediction tool wear monitoring methodology using Artificial Spiking Neuron Networks (ASNN). It consists of six components: data collection; feature extraction; pattern recognition; multi-sensor integration; tool wear estimation; and, one-step-ahead tool flank wear prediction. For sensed information, a self-organizing map (SOM) will be developed to integrate the spikiness nature of neurons. This network will be employed to recognize and synthesize the extracted features as belonging to different tool wear degradation levels. Such a model will be used to learn from the experienced time evolution in order to forecast future levels of wear based on temporal representations. The results from applying spiking neuron networks leads to the separation and identification of sensed objects that might contribute to a further understanding of mechanisms and its nature hidden in tool wear sensed signals. This system will be targeted, in terms of validation, for turning operations.
 
     
       
       
       
 

Publicações com Origem no Projecto

 
 

Silva, R. Gomes, P. (submitted) Retrofitting de um Torno de Comando Numérico. Tecnometal.

Silva, R.G., Wilcox, S.J. and Araújo, A. J. (2007) Multi-Sensor Condition Monitoring Using Spiking Neuron Networks. Proceedings of the International Conference on Applied Computing. February 18-20, Salamanca, Spain. (accepted, to be presented)

Silva, R.G., Wilcox, S.J. and Reuben, R.L. (2006) Development of a system for monitoring tool wear using artificial intelligence techniques. Proceedings of the Institution of Mechanical Engineers, Part B: J. Engineering Manufacture, 220(B8), 1333–1346.

Silva, R. Pereira, V. Oliveira, C. and Ferreira, J. (2006) Rede De Neurónios Impulsivos Aplicada À Monitorização De Desgaste De Ferramentas De Corte. Tecnometal.

Silva, RG (2005) A Robust Methodology for Tool Condition Monitoring using Spiking Neuron Networks, Proceedings of the Ninth IASTED International Conference on Artificial Intelligence and Soft Computing. Setembro 12-14, Benidorm, Espanha. ISBN 0-88986-536-1.

 
     
       
       
       
 

Anúncio para atribuição de Bolsa de Iniciação Científica (BIC)

 
 

Encontra-se aberto concurso para atribuição de uma Bolsa de Iniciação Científica no âmbito do Projecto POCI/EME/59491/2004, designado por “Monitorização Inteligente de Ferramentas de Corte”, co-financiado pela Fundação para a Ciência e a Tecnologia e pelo FEDER através do Programa Operacional Ciência e Inovação 2010.

Veja o documento do anúncio