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Abstract

The main objective of the work reported here was to develop an intelligent condition
monitoring system able to detect when a cutting tool was worn out. To accomplish this
objective the use of a hybrid intelligent system, based on an expert system and two neural
networks was investigated. The neural networks were employed to process data from sensors
and the classifications made by the neural networks were combined with information from the

knowledge base to make an estimate of the wear state of the tool.

The novelty of this work is mainly associated with the configuration of the developed system that
estimates tool wear in a new way. The combination of sensor-based information and inference
rules, results in an on-line system that can be updated when the cutting conditions fall outside of
the trained zone of the neural networks. The neural networks resolved the problem of interpreting
the complex sensor inputs while the expert system, by keeping track of previous success,
estimated which of the two neural networks was more reliable. Mis-classifications were filtered
out through the use of a rough but approximate estimator, Taylor’s tool life model. The use of
Taylor’s tool life model, although weak as a tool life estimator, proved to be crucial in achieving
higher performance levels. The application of the Self Organizing Map to tool wear monitoring
proved to have a slightly larger zone of influence and make slightly more accurate estimates of
tool wear than the Adaptive Resonance Theory neural network and overall the system made

reliable, accurate estimates of the tool wear.
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Nomenclature

b Slope of linear regression equation

C Constant in Taylor’s tool life equation
w Width of cut (mm)

f Feed rate (mm/rev)

F Cutting force (N)

n Exponent in Taylor’s tool life equation

N, Number of previous classifications
Pirr»  ART?2 outlier counter
Pyy  Total number of mis-classifications to date (general)

Psoyy  SOM outlier counter

r Linear regression coefficient

7 Linear regression correlation coefficient of previous Pyy samples
S; Sample reference number

t Time (s)

Tool life (min)
Vv Cutting speed (m/min)
VBy  Average flank wear (mm)
VB;  VBj for sample S; (mm)
VBrer Reference values of tool wear to define membership of a wear class

u Membership function



1. Introduction

One important challenge posed by the requirement to ensure high machine utilisation is the
ability to correctly classify the wear state of the cutting tool. Probably this task is so difficult
because the tool wear is a small change in a process with large variations. However the
mechanisms by which the cutting tool wears and the types of wear geometry created depend
on the cutting tool material, work piece material, tool geometry and cutting conditions have
been well documented [1]. Analytical models have been used to study the effects of tool
geometry on, for example, cutting forces [2, 3] and although these models are of value they
may be too complex to implement in a real-time tool wear monitoring system. Empirically
derived relationships tend to be reliable for a limited set of conditions and can normally only
be used for approximate calculations [4]. On the other hand, a rule based empirical inference
method requires an expert familiar with the relevant relational mechanisms and an ability to
translate those into inference rules. As such ‘experts’ do not exist (except in a narrow sense),

another empirical, non-expert-based method is needed.

The development of tool condition monitoring systems for machining has attracted a large
research effort with systems that focus on chatter, tool breakage and different manifestations
of tool wear. One approach is the development of monitoring indices such as the ratio of the
force and vibration at the natural frequency of the tool holder, or using spectral components of
the sound [5 to 10] that are sensitive to tool condition but insensitive to cutting conditions.
Table 1 summarises some of the results when monitoring tool wear. These indices attain only
limited success over a relatively small range of machining conditions as the relationships that
they rely on breakdown. Some work has been undertaken to investigate when this happens
[10]. What is needed is a monitoring system that is able to reform the relationships between

the parameters monitored and the machine condition as the machine conditions change.



Table 1: Turning Tool Monitoring Indices

Monitoring Indices Reference

Ratio of the force amplitude at first natural frequency of Rao [5]
tool-holder and the vibration amplitude at the same

frequency

Frequency analysis of dynamic forces Choi et al. [6]

Frequency band energy of the tool holder vibration Sokolowski et al. [7]
Spectral components of the sound radiated during cutting Lee [8]

Motor Current mean value Agogino et al. [9]

Ratio of forces Bayramoglu and Dungel [10]

In order to achieve reliable tool wear monitoring it is necessary to incorporate some degree of
intelligence into the software and perhaps also utilise multiple sensors [11]. Numerous
approaches have been described in the open literature and Table 2 summarises several
examples [5 and 12 to 18] from recent studies applied to the turning. According to these
authors, these monitoring methods may achieve a classification success of 90% or higher
under controller laboratory conditions. Although these techniques achieve very good results
under limited conditions, it is probable that the parameters that lead to the successful
prediction of tool wear under one set of conditions will change in importance (at the very
least) under different conditions. One approach would be to allow the system to re-learn or
generate new relationships when asked to make classifications for conditions where it is not
confident of making a good prediction. This approach might be implemented in the system as
a methodology for automatically gathering data for situations where the system has little
knowledge, which implies that the system must have knowledge of where it can operate
effectively. Therefore, there is a need to address the robustness and generality of any
developed system, something that has not been widely undertaken in the reported literature

[19].



Table 2: Application of Condition Monitoring Using Al and Sensor Fusion

Sensor Signal Monitoring Indices Classification Method Reference

Vibration and Ratio between force Wear index Rao [5]
forces and vibration
amplitude
Force and AE  Power Spectrum Neural networks Burke and Rangwala [12]
Sound Power spectrum Least-squares Trabelsi and Kannatey-
Emission minimum-distance Asibu [13]
Forces Force ratio Neural network Lee et al. [14]
AE, forces and AR models and Neural network Dornfeld [15]
spindle current power spectrum
Vibration Power spectrum Data Dependent System  Pandit and Kashou [16]
(DDS) modelling
Force and Time and frequency Neural network Dimla et al. [17 and 18]
vibration analysis

The overall objective of this work was to develop a tool wear monitoring system in which
signal processing, neural networks and decision-making techniques were used. This paper
focuses on the development of the tool condition monitoring system for the turning process
with an emphasis on the system robustness. In order to achieve this robustness the system
consisted of two neural networks to interpret the sensor information and an Expert System to
act as a mediator, synthesising information from different sources, namely; the neural
networks, awareness of cutting conditions, work piece material and cutting tool, cutting time,
and empirical knowledge based on Taylor’s model with fuzzy logic resulting in a new way of

estimating tool wear.

2. Experimental Apparatus, Procedure and Primary Results

In order to develop the system a set of data was collected from; the vertical vibration of the
turning centre, the sound emission whilst cutting, two components of cutting force and the

spindle current for different amounts of tool wear whilst machining a 7Smm diameter bar of



mild steel (EN1A), with a coated cemented carbide insert. The instruments used to make these
measurements are described in Table 1. The experiments were carried out on a MT 50 CNC
Slant Bed Turning Centre (Figure 1). The analogue signals were sampled with an Amplicon
PC-30PGL data acquisition board at a sample rate of 20 kHz per channel for a time period of
26 ms. Data were acquired at intervals of 2 minutes of cutting time at which point tool wear
was also measured, taking into account an expected life of about 15 minutes for the inserts, six
different inserts were used at each condition (to construct test and validation sets) and three
different wear levels were defined; new (VBz=0 mm), half-worn (VBg=0.15 mm) and worn
(VBz=0.3 mm). The cutting conditions investigated during the ‘training phase’ were selected
so that the tool would wear under realistic production conditions; cutting speed 350 m/min,

feed rate of 0.25 rev/min, width of cut of 1 mm [20].

Table 3: Instrumentation

Sensor Description Mounting
Accelerometer Kistler 8752A50 & Piezotron Base of the turning centre, to
Coupler - Kistler 5108 measure whole body
vibrations.
Microphone ECM-1028, matching amplifier Tool Post, directed at the
insert
Strain gauges  Two half Wheatstone bridges, Feed and tangential direction

constructed from one strain gauge

per side of the tool holder
Current Meter CNC built in sensor



Figure 1: MHP Moog-Turn 50 Slant Bed Turning Centre

2.1 Feature Extraction

Each 512 point data record, from the middle of the cut, was processed to generate features of;
the absolute deviation, mean, kurtosis, skewness of all sensors and the energy in the frequency
bands 2.2-2.4 kHz and 4.4-4.6 kHz obtained from the power spectrum of the sound, vibration
and cutting forces. Previous work by the current authors [21 and 22] had already demonstrated
that tool wear classification was improved when all features were included over that achieved
using only features, such as the cutting forces that were found to correlate most with the tool
wear level. These features were then passed directly to the two neural networks for
classification; with the training data coming from four wear tests and the validation data from
two tests not used during the ‘training phase’. Figure 2 shows the evolution of flank wear with
cutting time for the six tools that allowed the derivation of a relationship between cutting time
and flank wear, whilst Figures 3 and 4 show examples of the results of signal processing.
Observation of the evolving peak in Figure 3 at 2.4 kHz was a typical variation, although the
peak that occurs in this figure at high flank wear would often be of a different magnitude for
different samples, leading to a non-monotonic variable relationship with flank wear. For

Figure 4 typically the variation of the statistical parameters with flank wear resulted in



increased scatter at higher values of flank wear, although again the variation was far from

consistent.
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Figure 3: Vibration Spectrum vs. Flank Wear
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Figure 4: Sound Deviation vs. Flank Wear

In order to assess the ‘zone of influence’ of the tool wear monitoring system systematic
experiments were conducted to investigate as large a range of cutting conditions as possible
for this tool and work piece combination [20]. This was achieved by varying the cutting
conditions in both a fine and coarse manner (Table 4) about the cutting conditions used during
the training experiment. Data from three tool states (VBz=0, VB~0.15 mm, and VBz=0.3 mm)
were collected at each set of cutting conditions, as the time required to wear out a tool at each
point would have been prohibitive. According to the range of cutting conditions allowed by
the tool manufacturer’s handbook the following limits were established for the cutting
conditions; feed rate 0.2 to 0.5 mm/rev, cutting speed 200 to 350 m/min and a depth of cut up
to 5 mm. To keep the number of experiments within reasonable limits, tests were conducted
with the neural networks on-line to establish the range of adaptability of a network trained for
a given set of cutting conditions. Following the determination of the range of depth of cut,
feed rate and cutting speed under which the neural networks could still perform tool wear
monitoring accurately; finer variations were introduced within the area of tolerance for each

of the cutting conditions.
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3.Tool Wear Monitoring System Design

The monitoring system consisted of two neural networks; a self organising map and an
adaptive resonance theory network, linked with an Expert System by fuzzy logic. Section 3.1
heavily summarises the training and testing of the neural networks as this has already been

published in detail elsewhere [21 and 22], and so only a summary will be presented here.

3.1 Neural Network Implementation

When using neural networks it is important to be aware of the effect of computational
limitations. Relevant features have to be determined externally and the task of the neural
network is to determine the relationship between the incoming data and the tool wear classes.
In this application, it is desirable to know the tool wear rate so that it is possible to take
corrective actions. The two networks used in this work (a Self Organising Map (SOM) [23]
and Adaptive Resonance Theory (ART2) [24]) make classifications of approximate values of
wear for each set of input features. The objective was to be able to classify the present wear

stage so that it is possible to take appropriate action in the future regarding tool change.
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Table 4: List of Cutting Conditions Tested

Feed (mm/rev) Speed (m/min) Depth (mm)

0.250 350 1.000
0.275 350 1.000
0.250 350 1.500
0.200 350 1.000
0.225 350 1.000
0.250 350 1.250
0.250 337 1.000
0.250 350 1.125
0.300 350 1.125
0.200 350 1.125
0.250 344 1.000
0.300 344 1.000
0.250 344 1.125
0.300 344 1.125
0.275 344 1.000
0.225 344 1.000
0.225 350 1.125
0.275 350 1.125
0.225 344 1.125
0.275 344 1.125
0.300 350 1.000
0.250 325 1.000
0.250 344 1.000
0.200 344 1.125
0.175 350 1.000
0.325 350 1.000

Self-Organising Feature Map. The SOM typically has two layers; the input layer is
fully connected to a two-dimensional SOM or ‘Kohonen’ layer. In the SOM layer, none of the
neurones are connected to each other, regardless of relative position. The SOM layer neurones
each measure the Euclidean distance of their weights to the incoming input vector. During
recall, the SOM layer neurone with the minimum Euclidean distance is called the winner
adjusts its weights to be closer to the input vector [23]. In addition, the neighbours of the

winning neurone also adjust their weights to be closer to the same input data vector. In order
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to evaluate the performance of the SOM network it was necessary to interpret the SOM
topological output. This was achieved by using the Kriging method for surface meshing [25]

with this meshed surface being stored in a file ready for classification.

Adaptive Resonance Theory 2. An ART?2 algorithm can classify and recognise input
patterns without a teacher and consists of two interconnected layers of neurones. For tool wear
identification, the magnitude of features, such as the mean cutting force, has been found to be
an indicator of tool wear. However the ART2 algorithm relies on an explicitly normalised
input vector and automatically normalises the vectors during processing. It was therefore
decided to use the normalised inputs taking into account their limit values, thus adopting a
fixed scale for each feature. The duration of the training period was set according to the
network’s performance, during which weights were adapted and after which weights were

frozen based on a stability test.

Figures 5 and 6 show the wear estimates made by the two neural networks. Figure 5 shows the
results for the networks predicting wear for the data with which they were trained and as can
be clearly seen both networks have learnt the underlying relationships between the features
and the flank wear evolution. Figure 6 shows the predictions for a tool wear evolution not
presented during training. As can be seen from Figure 6 initially both neural networks
overestimate the tool wear, although the SOM makes slightly better estimates than the ART?2.
By the time the tool is approximately half worn (VBz~0.15 mm) both neural networks make
reliable estimates of the flank wear resulting in an accurate estimate of when to change the

insert.
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3.2 Expert System Development

The Expert System interpreted the ANN output by the use of a knowledge base that mapped

the outputs of the ANNs into specific wear detector states. This was achieved by determining
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their membership value (i.e. how worn the tools are) in terms of a threshold value selected
according to tool wear criteria. The final result was then selected based on a reliability
measure for the neural networks which took into account their performance. Knowledge was
encoded in the form of rules which enabled the Expert System to perform any reasoning
required for tool wear prediction. The rule priority allowed the determination of the order of

precedence in the reasoning path when more than one rule applied.

Removal of Neural Network Mis-classifications. In order to reduce the effects of the small
number of mis-classifications by the two ANNSs, rules were encoded which encapsulated
Taylor’s empirical tool life model (Table 5). The prediction made by Taylor’s tool life model
(VT'=C) was used to establish preliminary wear intervals with mis-classifications being

removed if they fell outside these intervals (Figure 7).

Table 5: Rules Based on Cutting Time

Rule No IF THEN Priority
1 VB (NN) > VB (Taylor) + 0.15 Exclude 2
2 VB3 (NN) < VBj (Taylor) - 0.15 Exclude 2

The parametric values of Taylor’s tool life equation for the work piece and tool material, that
is n and C, have to be known in order to determine the above rules, and for a given set of
working materials and cutting tools a data base was constructed to cover the material
investigated, these values were C = 823, n = 0.33 [26]. Taylor’s tool life equation yields a life
in minutes and it was necessary to convert this to a flank wear values using an empirical

equation derived from Figure 2.
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Figure 7: Outlier detection example

Interpreting Uncertainty Using Fuzzy Rules. At this stage the tool wear level was
classified by combining the ANN predictions with the outlier detector using a fuzzy function
which returned a continuous grading of set membership between 0 and 1. The membership
function [Equation 1] determined the level of tool wear (Figure 8). Membership of a class was
defined by the sigmoid function which used VBggr as an exponent constant. This value might
also be selected to account for surface finish, machine stability, or different wear criteria and it
is also important to account for small deviations from the predicted results. For this work a
value of VBggr = 0.28 mm was found to be suitable, giving u(0.3)=0.8. A fuzzy membership
function eliminated the ‘hard barrier’ created by crisp sets (worn or not), thus for each
classification a grade was given which specified the level of tool wear. Table 6 shows rules 3

and 4 which account for outliers or calculate the membership value.
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Table 6: Membership Rules for Non-Outliers

Rule No IF THEN ELSE Priority
3 VBs(ART?2) # Unknown U (VB (ART?2)) Purr+ 1 1
4 VBg (SOM) % Unknown M (VBB (SOM)) Psoy + 1 1

Neural network performance was also taken into account by tracking previous failures
recorded by the outlier detectors (Pagrr> or Psow value). Membership values were only
calculated for predictions that were found to pass the outlier detector; otherwise they
reinforced the determination of a neural network’s ineffectiveness at tool wear classification

(P NN Value) .

The Use of Historical Data. In order to increase the confidence of classification, each
prediction was compared with Np previous classifications to establish the final assessment of
the classifications made by the neural networks (Rules 5 and 6) by obtaining the linear

correlation coefficient for the last Np samples.
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Table 7: List of Rules to Account for Historical Weighting

Rule No IF THEN Priority
5 VB3 (ART?2) # Unknown r, (ART?2) 1
6 VBg (SOM) # Unknown r» (SOM) 1

If the last Np predictions were well correlated a value near 1 was achieved for r,. Although the
evolution of wear with time may not be linear it is probably valid to assume a linear
relationship for small time intervals. The number of previous samples (&V,) was set to a value

of 3 in this work.

Tool Wear Diagnosis. Finally, to obtain the overall assessment of the tool wear state it was
necessary to examine the results of the combined Rules 3 to 6. Since the aim was to determine
whether the tool had failed due to excessive wear, a Goal had to be established within the
Expert System to ask, ‘‘In What State is the Tool?’’, which triggered the rule interpretation
process. If the ANNs agreed as to the state of the tool, or one reported an unknown state, a
solution was possible; otherwise the determination of the tool state was resolved from a
reliability perspective. Reliability was determined using the NN wear prediction correlation
(determined from previous data) and the present prediction. The diagnosis consisted of the
integration of both neural network predictions using the weights provided from the analysis of
their performance, based on the evolution of historical data, r,, and previous successful
classifications obtained, Pyy. The most reliable neural network prediction carried the most
weight in the classification of wear. Table 8 shows the rules, which resolve conflict between
the neural networks by comparing their reliability and historical success based on up to date
information processed each time a verdict was triggered by a new data sample. The prototype
tool wear monitoring system then was a hybrid integration of the neural networks and the
expert system and its knowledge. Within this hybrid architecture, the neural networks were
employed to detect the state of the tool based on the classification of sensor output as it

changed with time. The knowledge-based expert system was used to determine confidence
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limits of tool wear stages via Taylor’s tool life model, interpret the ANN results, and provide

an overall monitoring assessment.

Table 8: Rule to Resolve Conflicts between Predictions

Rule No IF THEN Priority
7 Pw(ART2)/ ri(ART2) < Pxy(SOM)/r;, (SOM) ART2 0
8 Pww(ART2)/ ri(ART2) >= Py(SOM)/r, (SOM) SOM 0
9 Both Unknown Unknown 0

A proprietary environment (KAPPA-PC) was used to combine the neural network and expert
system technologies and to develop the tool wear monitoring system, although external
programs performed some numerically intensive processing. Figure 9 shows a schematic

diagram of the structure of the monitoring system.
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Figure 9: Stages in Tool Wear Estimation

4. Hybrid System Results

This section presents a summary of the results obtained with the neural networks as this has
been published elsewhere [21 and 22] with the results obtained from the complete monitoring

system being presented in detail.
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4.1 Summary of Neural Network Results for Fixed Cutting Conditions

A summary of the results for both neural networks is given in Table 9. This table presents
both correlation coefficient (r) and linear slope (b). Two results are presented for each neural
network configuration, for the training feature vectors and the test set. As can be see the SOM
outperforms the ART2 network slightly both in terms of the correlation coefficient and the

slope variation from the ideal.

Table 9: Performance Results for the ART2 and SOM Networks

Tests b R

ART?2, training set 0.930 0.960
ART2, unseen test set 0.858 0.914
SOM, training set 0.946 0.964
SOM, unseen test set 0.871 0.946

4.2 Summary of Neural Network Results for Variable Cutting

Conditions

Examination of the results obtained from each sensor showed that there were some subtle and
some coarse variations in the sensor output as cutting conditions changed. This resulted in a
zone around the training conditions where the neural networks classified satisfactorily. The
features obtained from processing the force transducer output were the factors that influenced
neural network performance the most. Performance measurements were obtained by averaging
two consecutive samples from each test condition (Table 4) with individual sample
performance being calculated as the percentage error of the prediction compared to the actual
wear value. The maximum percentage error at each wear level was chosen as the final
performance measure. The system was capable of generalising over a small range of cutting
conditions and this capacity differed slightly between the two neural networks as will be

shown in the following sections.
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Self-Organising Map Results: The self organising map was trained with the data from
4 inserts obtained from fixed cutting conditions for 30,000 epochs and, after this period,
organised areas, representative of different wear levels, were created on a 6 by 6 neurone
output layer. To determine the optimum number of epochs several tests were undertaken in
order to achieve good classification results. The measurement of performance for the self-
organising map consisted simply of plotting the classification results against the measured
ones, the straight line representing the ideal fit and the dashed the data fit through the origin.
A value of performance was obtained by determining the correlation coefficient of the linear
fit through the origin, only accounting for the test data. Classification was successful (>80%)
for variations in feed (Figure 10) between 0.2 and 0.275 mm/rev with the other cutting
conditions kept constant. For increases in the width of cut (Figure 11) up to 1.175 mm,
classification was successful but decreased sharply afterwards. Cutting speed changes
(Figure 12) also resulted in reduced performance of the SOM, with only one set of cutting
conditions achieving 60% classification a speed of 344 m/min. The deterioration rates for
individual cutting conditions are; cutting speed 7 %/(m/min), feed rate 10%/(0.01 mm/rev),

and width of cut 20%/(0.1 mm).

Adaptive Resonance Theory: The adaptive resonance theory neural network gave its
best performance when trained for 1,000 epochs with a vigilance parameter equal to 0.996.
These were determined after successive tests from which the best configuration was chosen.
The parameters were set to give a reliable training time as well as a minimum of 10 data
clusters. The number of data presentations was determined by the magnitude with which the
weights changed, as for small weight changes clusters cease to be created. The same criteria
for performance evaluation, as the one used for the SOM, was applied to the ART2 network.
Here, variations in feed rate (Figure 10) between 0.23 and 0.285 mm/rev result in a
classification success greater than 80%. The ART2 was successful in classifying patterns with
widths of cut up to 1.225 mm (Figure 11), but the performance deteriorated rapidly beyond

this. Cutting speed (Figure 12) significantly influences the ART2 performance, it being
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unable to generalise when presented with data acquired at cutting speeds lower than 344
m/min. At some isolated cutting conditions the ART2 succeeded in classifying the test
samples, but general performance was constrained to a limited zone of influence. The
deterioration rates were approximately; cutting speed 100% after 344 m/min, feed rate
asymmetrical for feed > 0.275 mm/rev, 100% and for feed < 0.25 mm/rev, 10%/(0.01 mm/rev),

width of cut 20%/(0.1 mm) average.
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4.3 Hybrid System Assessment and Discussion

The linking of an expert system with the neural networks allowed for the removal of obvious
mis-classifications, thereby increasing overall system performance. Generally, the overall
system modularity contributed largely to the success of this application, mainly due to the
flexibility that it provided when implementing or modifying the embedded knowledge.
Modularity becomes essential in a system like this because adaptability is not always possible
with a fixed architecture. Furthermore, knowledge in the form of rules can be updated or
added as required with little effort, which would not alter the overall structure of the system.
The present system was custom built for a specific tool/work piece combination. However the
modular approach resulted in a system that enables new materials and tool configurations to
be incorporated by updating the knowledge base with new parameters for Taylor’s tool life
model and/or by training the neural networks under new cutting conditions. The database can
be easily updated through a user-friendly interface that allows the neural networks to be

trained with test data acquired in a few tests, which can then be stored for future use.
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In order to improve the performance of the system past experience was taken into account for
each tool life. This consisted of keeping track of classifications and then using a number of
classifications to assess the consistency of classification. Through the use of historical data
the system becomes aware of previous performance and can judge its reliability. Therefore
system ‘awareness’ provides a certain degree of ‘intelligence’ that enables the system to know,
according to the ‘past’, what the ‘present’ may or may not be. This methodology resembles, to
a certain extent, the cognitive process of the operator when confronted with doubtful
information and enables the ‘machine’ to make more reliable decisions. As the Taylor model
makes a conservative estimate of tool wear, its use allows the elimination of some outliers
generated from poor neural network classification or sporadic noisy signals picked up by the
sensors. In order to allow the neural networks and expert system to interact, a £0.15 mm
margin was applied around the optimum prediction so as to prevent the expert system from
removing good classifications, which resulted in an improved performance. Overall the
system results achieved a successful classification rate of 100% for all worn states although
for a new tool the system overestimated the flank wear by approximately 0.lmm. Thus, the
linking of an Expert System based on empirical data and two neural networks enabled the
monitoring system to achieve consistently better results than either classification technique
alone. Figures 13 and 14 show the results obtained for two tool wear evolutions at the cutting
conditions of cutting speed 350 m/min, feed rate of 0.25 rev/min and width of cut of 1 mm.
Figure 13 shows the results for a tool life that was used to train the neural networks and Figure
14 the results for data not presented during training. These figures correspond to the neural
network results presented in Figures 5 and 6. Figure 13 demonstrates that the system has been
properly configured for this condition whilst Figure 14 demonstrates the result of the expert
system monitoring the performance of the neural networks, removing misclassifications. If
Figures 6 and 14 are compared it is possible to observe that for a new tool the expert system
picks the SOM network for the first three wear estimates. The predictions made by both the
SOM and ART?2 then both agree, after which the expert system picks the ART2 network

estimate before then again relying on the SOM until the end of the life of the tool.
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Both the self-organising map and ART?2, each acting alone, have a large capacity to categorise

the different wear stages. The training period had a large effect on the performance of the
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SOM and more training time was required for the SOM than the ART2, although at the
interpretation stage both had similar processing speeds since the basic calculations are

relatively simple.

Of the two networks the SOM, compared to the ART2, was better able to extract the complex
relationship between tool wear and the selected features, it was less prone to the influence of
noise and was able to generalise more completely (Table 9 and Figures 10 to 12). This was
perhaps due to the fact that with the SOM more graduations on the wear scale were available
(6x6) given that each neurone can tune to a different wear level, whereas the ART2 was
subject to the number of classes created during training. To increase the accuracy of the ART2
it would be necessary to reduce the vigilance parameter, which controlled how fine the classes
generated were. It might be possible to increase the robustness of the system if a selection of
points at various cutting conditions were added to the training set, allowing the neural
networks to learn the combined effect of tool wear and cutting conditions. A useful training
set would however have to be large enough to reflect reliably a range of cutting conditions,
and would imply a large number of experiments. The cost of knowing this might be too large
and perhaps a better approach would be, as in this system, to work reliably for a small set of
conditions that are commonly used on the machine and then expand its range as and when

needed, thereby spreading the cost of attaining the knowledge.

It has been demonstrated that the majority of outliers can be successfully eliminated by the
application of rules based on Taylor’s model of tool life, resulting in an improved monitoring
system performance. As can be seen from Table 9, the NN predictions tend to slightly
overestimate the wear, whereas the Taylor equation used here is slightly conservative. The use
of the Taylor equation to eliminate outliers improves the NN predictions in that the correlation
coefficients increase towards the ideal value of unity, as does the gradient. From a study of

alternative Taylor equations it appears that the slope of the Taylor line will always exceed
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unity. Overall, this means that the combined approach succeeds in its aim of giving an on-line

estimate of tool condition without the conservatism associated with the use of empirical rules.

Ideally, the tool monitoring system should be relatively independent of the cutting conditions,
but as has already been observed this is not the case. The experiments have shown that the
sensor-based component of a hybrid system shows a modest, but useful, range of cutting
conditions over which its performance will not degrade to an unacceptable level. At worst, this
type of information could be used to assess the minimum necessary number of test and
training points required to cover all foreseeable cutting conditions. Also, if the effect of
cutting conditions on the sensor signals can be modelled a level of adaptability could be built
into the system by modifying the feature values to account for variation in cutting conditions,

which might be possible by encapsulating models by such authors as [3].

5. Conclusions

It has been demonstrated that the combination of an Expert System and two neural networks 1s
an appropriate way to monitor tool wear. Although, it has only been possible to classify tool
wear successfully over a limited range of cutting conditions without retraining, the
methodology adopted during this work would allow re-training of the monitoring system in a
short period of time perhaps with the machine tool in service. The use of multiple sensors has
proved to be of great value towards tool wear evaluation since the noisy character of each
sensor alone would lead to certain failure of the monitoring system. The tangential and feed
forces proved to be the strongest features of all but also varied the most with changes in
cutting conditions. The other sensors; spindle current, vibration and sound, were related to the

evolution of wear, although more weakly.
Feature extraction proved to be adequate for the present monitoring system, generating an
enormous amount of information, which although very complex, was successfully interpreted

by the neural networks. In this hybrid approach, the neural networks classified the abnormal
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and normal operating states, while the knowledge base interpreted the ANN results and
classified the state of the tool with the expert knowledge encoded in it. In particular, this

investigation has shown that:-

* The Self Organizing Map (SOM) and Adaptive Resonance Theory (ART2) neural
networks can classify different tool wear levels based on sensory information even in the
presence of large amounts of noise.

e That the Expert System complements the neural networks by removing neural network
misclassifications and increases the overall prediction capacity by the use of process
history.

* The use of multiple neural networks enhances classification by monitoring their reliability

and thereafter selecting the one performing better.
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