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ABSTRACT 
Artificial neural networks of sigmoidal and McCulloch-
Pitts neurons have found increasing favour in industry 
research because of their most attractive features, 
abstraction of hardly accessible knowledge and 
generalisation from distorted sensor signals. In recent 
years experimental evidence has been accumulating to 
suggest that biological neural networks, which 
communicate through spikes, use the timing of these 
spikes to encode and compute information in a more 
efficient way. In this paper it is presented a simplified 
version of a Self Organizing neural architecture based on 
Spiking Neurons and it is shown that this computational 
architectures have a greater potential to unveil embedded 
information in tool wear monitoring data sets and that 
smaller structures, compared to sigmoidal neural 
networks, are needed to capture and model the inherent 
complexity embedded in tool wear monitoring data. 
Additional, it is proposed a robust methodology based on 
tool wear estimation historical evolution that should 
improve estimation and predictive capabilities of Tool 
Condition Monitoring systems. 
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1. Introduction 
 
Manufacturing industries’ drive for cost savings and 
productivity improvements have culminated in the 
creation of minimally manned factories. The late 1990s 
and early 2000s have witnessed a change from the old 
practice of changing tools automatically, to the feasibility 
of instituting tool change procedures based on monitoring 
the amount of wear on the cutting tool-edges through the 
implementation of adaptive tool inspection mechanisms. 
For machine tools these systems are termed tool condition 
monitors (TCM). The main goal in the application of 
TCM is to increase productivity and hence 
competitiveness by maximising tool life, minimising 

machine down time, reducing scrappage and preventing 
damage. Thus, appropriate and timely decision for tool 
change is significantly required in the machining systems. 
The traditional ability of the operator to determine the 
condition of the tool based on his experience and senses, 
i.e. vision and hearing, is now the expected role of the 
monitoring system. One important strategy to support this 
goal is sensor-based, real-time control of key 
characteristics of both machines and products, throughout 
the manufacturing process. 
 
In order to justify the capital investment associated with 
the installation of flexible manufacturing equipment it is 
necessary to achieve the maximum utilisation possible. 
One of the challenges this poses lies in devising methods 
for the classification of cutting tool wear. This seemingly 
simple task has posed considerable difficulty, probably 
due to the fact that tool wear introduces small changes in 
a process with very wide dynamic range. The task can be 
subdivided into a number of stages; sensor selection and 
deployment, generation of a feature indicative of tool 
condition and finally classification, i.e. assessing the 
collected and processed information so as to determine the 
level of wear on the tool. 
 
This article is subdivided in four main sections: an 
introductory section to condition monitoring and its 
present state; an introduction to spiking neuron networks 
and its feasibility to condition monitoring; a section 
dedicated to the experimental work and simulation results; 
and a last section that lays out a robust methodology to 
aid tool wear estimation and prediction. 
 
 
2. Condition Monitoring 
 
The need for monitoring in a metal cutting process 
encompasses monitoring the machine and the cutting 
process dynamics, cutting tools and workpiece to insure 
optimum performance of the systems. A tool condition 
monitoring system can therefore be viewed as serving the 
following purposes, Byrne et al. [1]: 



 

• Advanced fault detection system for cutting and 
machine tool, 

• Check and safeguard machining process stability, 
• Means by which machining tolerance is maintained on 

the workpiece to acceptable limits by providing a 
compensatory mechanism for tool wear offsets, and 

• Machine tool damage avoidance system.  
 
Several factors have impeded advances in the 
development of TCMSs including inappropriate choice of 
sensor signals and their utilisation. The random behaviour 
can be attributed to the large-scale variation and non-
homogeneities that exist in the workpiece. Typically, most 
metal cutting processes can be classified as having one or 
more of the following characteristics, Warneche et al. [2]: 
• Complex to chaotic behaviour due to non-

homogeneities in workpiece material, 
• Sensitivity of the process parameters to cutting 

conditions, and 
• Non-linear relationship of the process parameters to tool 

wear. 
 
A mechanistic model derived from first principles is 
theoretically the most accurate model that can be 
developed for any system. Unfortunately, the resources 
required to develop such a model for even the simplest of 
systems tends to prohibit their use. To give an idea of the 
complexity of the cutting process one can simply look at 
the turning process. Tool wear processes generally occur 
in combination with the predominant wear mode, 
dependent upon the cutting conditions, workpiece and 
tooling material, and the tool insert geometry. For a given 
cutting tool and workpiece material combination, the tool 
wear form may depend exclusively on the cutting 
conditions, principally cutting speed V and the un-
deformed chip thickness t, and a combination of the 
aforementioned wear mechanisms. Ranges of cutting 
speed where each type of wear is predominant can be 
identified by considering the product of these values as 
V.t, which is directly proportional to the cutting speed. 
Sometimes, the tool life can be considerably reduced if 
the area of cut, the area swept by the cutting tool, is 
significantly increased (i.e. by increasing the depth of cut 
mainly).  At low cutting speeds, the tool wears 
predominantly by a rounding-off of the cutting point and 
subsequently looses sharpness. As the cutting speed 
increases the wear-land pattern changes to accommodate 
the ensuing change with extremely high values, leading to 
plastic flow at the tool point. Cratering on the other hand 
depends largely on the cutting temperature than on the 
cutting speed. Therefore, forecasting in complex systems 
characterized by poorly understood, noisy and often non-
linear can be practically impossible when based on 
traditional model predictive algorithms, Parlos, et al. [3]. 
 
Consequently engineers tend to rely on system 
identification techniques to establish process models. As 
with linear models, ANNs provide a description of the 
relationship between cause and effect variables. The 

benefit of ANNs over linear models is that they are 
capable of modelling non-linear relationships. In fact 
studies have shown them to be capable of modelling any 
non-linear function to arbitrary accuracy Cybenko [4] and 
Hornik et al. [5]. Also, artificial neural networks have 
found increasing favour in manufacturing systems 
research because of their ability to perform robustly in 
noisy environments, Balazinski et al. [6]. Abstraction of 
hardly accessible knowledge and generalisation from 
distorted sensor signals are some of the most attractive 
features of neural networks when applied to sensor fusion 
and classification in tool wear monitoring. Nevertheless, 
although working in certain conditions, most of the 
previous applications of neural networks have some 
limitations, as reported by Lennox et al. [7] in an extense 
study into the application of artificial neural networks in 
the area of process monitoring and control. 
 
Much research has been carried out concerning the 
development of a reliable TCMS. However, none has yet 
found ubiquitous industrial use, Dan and Mathew [8] and 
Dimla [9]. Several factors have impeded advances in the 
development of TCMSs including inappropriate choice of 
sensor signals and their utilisation. One of the primary 
reasons for the lack of industrial application of TCMSs is 
due to the fact that TCMSs have been developed based 
mainly on mathematical models, which require huge 
amounts of empirical data. Another possible hindrance 
lies in the nature and characteristics of the utilised sensor 
signals in general, which tend to be stochastic and non-
stationary and therefore difficult to model, Silva et al.[10].  
 
In order to achieve reliable tool wear monitoring it is 
necessary to incorporate some degree of intelligence into 
the software and perhaps also utilise multiple sensors, 
Dimla et al. [11]. Numerous approaches have been 
described in the open literature ([2], [9], [12]), some 
studies applied to the turning process ([8], [13]). 
 
 
3. Spiking Neuron Networks 
 
Computational models for neural systems have often 
concentrated on the processing of static stimuli. However, 
numerous biologically relevant signals have a rich 
temporal structure, and neural circuits must process these 
signals in real time. In many signal processing tasks, such 
as audition, almost all of the information is embedded in 
the temporal structure. In the visual domain, movement 
represents one of the fundamental features extracted by 
the nervous system. Hence, it is not surprising that in the 
last few years there has been increasing interest in the 
dynamic aspects of neural processing. Processing of real-
world time-varying stimuli is a difficult problem, and 
represents a challenge for artificial models of neural 
functions, Natschläger and Maass [14]. Simultaneously, in 
computer science several areas such as computer vision, 
robotics, and machine learning have also increased their 
efforts to deal with dynamic real-world inputs. 



 

 
Models of spiking neurons have been extensively studied 
in the neuroscience literature [15], in recent years. Spiky 
networks have a greater computational power than 
networks of sigmoidal and McCulloch–Pitts neurons, 
Maass [16], and are able to model the ability of biological 
neurons to convey information by the exact timing of an 
individual pulse, and not only by the frequency of the 
pulses Bugmann [17] and Maass and Ruf [18]. A class of 
the more detailed models, known as conductance based 
ones, have their origins in the classic work by Hodgkin 
and Huxley [19] who have summarised their experimental 
studies of the giant axon of the squid in four differential 
equations. Also, pulse coding is computationally powerful 
[20] and very promising for tasks in which temporal 
information needs to be processed. 
 
To date all neural network based tool condition 
monitoring relied on the traditional basic concepts 
introduced by McCullock and Pitts. However, in recent 
years experimental evidence has been accumulating to 
suggest that biological neural networks, which 
communicate through spikes, use timing of these spikes to 
encode and compute information. In tool condition 
monitoring, numerous sensed signals on the process have 
a rich temporal structure [21], and neural circuits must 
process these in real time. As suggested, these new 
computationally architectures of neural networks based on 
Spiking Neurons, also known as integrate-and-fire 
neurons, reveal a greater computational power than 
networks of sigmoidal and McCulloch-Pitts neurons.  
 
 
4. Preliminary Experimental Work 
 
Based on the above considerations experimental 
background work was conducted on the turning process to 
collect tool wear data. In this work a set of tool wear 
cutting data was acquired by machining a block of mild 
steel under realistic production conditions that consisted 
of a cutting speed of 350 m/min, a feed rate of 0.25 
rev/min and a depth of cut of 1 mm, with a coated 
cemented carbide tip. The set of sensors used were; an 
accelerometer for measuring vertical vibration, a 
microphone for recording the sound emission, a strain 
gauged tool holder for force measurement and a meter for 
the spindle current of the CNC machine. The turning 
operation was carried out on an MT 50 CNC Slant Bed 
Turning Centre. The analogue signals were sampled at 20 
kHz with tool wear and sensor data being acquired at 
intervals of 2 min, taking into account an expected tool 
life, for each insert, with a typical value of 15 min. 
Sample data were recorded for 6 inserts. The length of 
each sample was 512 points, and these were acquired 
approximately in the middle of the bar. 
 
Each 512 point record was processed to generate the 
features used in the classification stage. A total of 12 
features were extracted from the sound and vibration data: 

absolute deviation, average, kurtosis, skewness and the 
energy in the frequency bands (2.2-2.4 and 4.4-4.6 kHz) 
obtained from the spectra. Two additional features were 
presented from the means of the feed and tangential 
forces. Results have sown that tool wear classification is 
difficult in the presence of such noisy data and it is 
therefore required that classification is made by a method 
that can resolve the complex interrelation between 
features to produce a robust wear classification. Also the 
use of multiple sensors should prove to be of great value 
towards tool wear evaluation since the noisy character of 
each sensor alone would lead to certain failure of the 
monitoring system [11]. 
 
 
5. The Spiking Neuron Network (SNN) Model 
Implementation 
 
Despite the current popularity supervised learning 
algorithms, its need for a correct estimate of tool 
condition in every training sample limits its successful 
application to online tool wear monitoring systems. The 
implication of requiring correct tool condition is that the 
machining operation must be interrupted so as to acquire 
information about tool condition and, as there are 
numerous combinations of tools, work materials, and 
cutting conditions (e.g. cutting speed and feed rate), 
which the eventual monitoring system should handle, a 
supervised learning procedure is undesirable. For a 
practical and reliable on-line monitoring system, it is 
desirable to have a neural network using “unsupervised” 
training samples without tool wear information, thereby 
allowing the interpretation of the resulting self-
organisation with the fewest number of “supervised” 
samples. Also, unsupervised learning can be used to 
validate features´ trustworthiness in the sense that there is 
no prior knowledge of what is being classified. In this 
sense the network creates clusters that should allow 
classification of input patterns into classes of wear states. 
Therefore, the combination of unsupervised learning with 
artificial spiking neurons should resemble a more realistic 
description of unsupervised learning. 
 
As shown by Maass [16] leaky integrate-and-fire neurons 
can compute weighted sums in temporal coding, where 
the firing time of a neuron encodes a value in the sense 
that an early firing of the neuron represents a large value. 
The basic output neuron, in a typical spiking neuron 
network, receives a weighed contribution from each input 
neuron. Each output neuron fires as long as some 
threshold is reached, firing time correlates to a class of 
input patterns. Competitive learning is centred in the first 
fired output neuron so that it gets gradually representative 
of such a class of patterns. Unsupervised learning follows 
a scheme by which a set of n-dimensional input vectors 
are randomly presented to the input neurons. Assuming 
that the input vector is normalized then this weighted sum 
represents the similarity between the two vectors with 
respect to the Euclidean distance. Hence the earlier vj 



 

fires, the more similar is its weight vector to the input 
vector [22].  
 
Self organisation of topologically close neurons is realised 
taking into account that initial neurons that are 
topologically close together have strong excitatory lateral 
connections whereas remote neurons have strong 
inhibitory connections. 
Taking into account what was previously discussed, and 
based on the above indications, the algorithm will be 
presented step by step as it was built for the simulation.  
Step 1. Initialise weights from the inputs i to the total 

output nodes j, to small random values. 
Step 2. Present an input vector l

is randomly selected 
from the training set – time is embedded in the 
feature vector. 

Step 3. Compute the weighted sum between the input Si 
and each output node vj, at each time step δ, 
using the following equation,  

∑=
i

l
iijj swPot  

Step 4. Select the firing neuron, the ones which cross a 
threshold θ (chosen experimentally so that 
classification could occur, data dependent), and 
update all weights according to the following 
rule, 
( )( )ij

l
ijij wstw −−=Δ 1η , 

where t is the firing time of the output neuron j 
and η the learning rate, η linearly decreasing 
with time. 

Step 5. Repeat for each time step, by going to Step 3. 
Step 6. Repeat by going to Step 2 
 
The implementation consists of three major components; 
input vector normalisation, training, and test data 
interpretation. Upon training, the weights start to stabilise 
until there is no significant change in their value. 
Interpretation of the output results was achieved by 
analysing the firing times of the output neurons, the 
earlier they fire the closer they match a group 
classification.  
 
In real-time, the only available information concerning a 
configuration’s success will reside in its training 
performance. The ideal policy will recommend employing 
a neural network exhibiting “good” sample set 
classification. The testing to be performed will assess the 
validity of such a policy for competitive learning, i.e. it 
will observe its generalisation ability. In addition, testing 
will identify the configurations which typically yield good 
results, and mark them as good candidates for the 
application. Two policies exist for training pertaining to 
weight update. In this work the policy dictating that 
weights freeze after “sufficient” training is followed 
because this provides better control over test 
classification. 
 

 
6. Simulation and Results with the SNN 
 
Simulation was performed with an artificial neuron 
network algorithm, similar to the above description, using 
16 input neurons (one for each feature extracted from 
experimental data) and a variable number of output 
neurons. Training was performed on experimental data 
from 4 cutting inserts representing several wear stages. 
Classification tests were conducted on unseen 
experimental data from 2 cutting inserts.  
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Figure 1 – characteristic Spiking time response on unseen 
cutting data 

 
Self organisation occurs and it is depicted a classification 
pattern by the timing of neurons burst. Tests have shown 
that initially nearly all neurons react strongly, i.e. fire 
early on each input, whereas after learning only few 
neurons, being topologically close, react on a certain input 
pattern. In response to this observation simulations were 
conducted by reducing the output layer up to only one 
neuron. It was observed that learning still took place and 
the resulting classification was the reflex of neuron firing 
time, as in Figure 1. Therefore, classification is possible 
based on the timing neurons potential cross a threshold 
and fire. 
 
It can be observed that for an early stage of wear there is 
no clear classification reflecting a gradual increase in the 
wear state. It is though clear that above a flank wear of 
about 0.27 mm classification is possible based on the 
spiking time of the output neuron, and undoubtedly recalls 
a worn state of the tool.  
 
 
7. Robust Estimation and Prediction 
 
It is well known that industrial processes are characterized 
by noisy environments and therefore pose a challenging 
task for monitoring strategies. Also, most methodologies 
fail to be successful because of their incapability to cope 
with random and spurious events that may cause or lead to 
doubtful decisions concerning tool wear estimation. 



 

Further, tool wear evolution is a continuous process that 
has a predetermined growth nature. 
 
Given the above considerations, and in order to improve 
the performance a tool condition monitoring system, past 
experience can be taken in to account for each tool life. 
This consists of keeping track of classifications and then 
using a number of classifications to assess the consistency 
of classification. Through the use of historical data the 
system becomes aware of previous performance and can 
judge its reliability, therefore system ‘awareness’ provides 
a certain degree of “intelligence” which enables the 
system to know, according to the “past”, what the 
“present” may or may not be. This methodology 
resembles, to a certain extent, the cognitive process of the 
operator when confronted with doubtful information and 
enables the “machine” to make more reliable decisions. 
To aid this task regression can be used to model tool wear 
evolution and give predictive capabilities to the 
monitoring system.  
 
 
8. Conclusion 
 
This paper described the implementation of a prototype 
decision support system for tool wear monitoring based 
on Spiking Neuron Networks. It was shown that the 
modelling technique proposed is highly effective for the 
classification of wear levels of tool inserts using 
apparently weak features.  
 
The results show that time coding have an enormous 
impact on the structure of the network required to perform 
this classification task. The reduction in size allows for a 
fast and realistic learning in real-time, and possibly on-
line. These results show that such an adaptation can result 
in grate improvements if compared with previous 
approaches using traditional artificial neural networks. 
 
The proposed methods have shown the adequacy of 
spiking neuron networks for tool condition monitoring 
implying that this approach is feasible for industrial 
applications where only noisy data is available. It is 
shown that the combination of these two approaches, a 
non-linear time series analysis and a temporal sequence 
processing using Spiking Neuron Networks, is a 
promising new methodology for Machine Condition 
Monitoring. Robust estimation and prediction should also 
prove to contribute to the success of this approach. 
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